Promote, Suppress, Iterate How Language Models Answer One-to-Many Factual Queries

Tianyi Lorena Yan

Robin Jia

The Complex Side of Answering 1-to-N Factual Queries

List three cities from France: 1. Paris 2. Marseille 3. Lyon

- Two subtasks:
- **Knowledge recall**: Given the query, retrieve relevant answers
- Repetition avoidance: Should not generate answers that have been generated

The Complex Side of Answering 1-to-N Factual Queries

List three cities from France: 1. Paris 2. Marseille 3. Lyon

- Two subtasks:
- **Knowledge recall**: Given the query, retrieve relevant answers
- Repetition avoidance: Should not generate answers that have been generated
- 🧐 RQs:
- Overall Mechanism: How do LMs get different answers at different steps?
- **Source**: How are knowledge recall and repetition avoidance implemented?

Experiment Settings

Datasets:

Dataset	Example Prompt Template
Country-Cities	List three cities from <country></country>
Artist-Songs	Name three songs sung by <artist></artist>
Actor-Movies	State three movie titles starring <actor></actor>

Experiment Settings

Datasets:

Dataset	Example Prompt Template
Country-Cities	List three cities from <country></country>
Artist-Songs	Name three songs sung by <artist></artist>
Actor-Movies	State three movie titles starring <actor></actor>

• Models: Llama-3-8B-Instruct & Mistral-7B-Instruct-v0.2

Experiment Settings

Datasets:

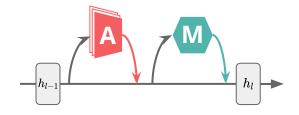
Dataset	Example Prompt Template
Country-Cities	List three cities from <country></country>
Artist-Songs	Name three songs sung by <artist></artist>
Actor-Movies	State three movie titles starring <actor></actor>

- Models: Llama-3-8B-Instruct & Mistral-7B-Instruct-v0.2
- Three templates for each model and dataset. Focus on correct cases for analyses When analyzing models' behaviors at answer step *i*, use all tokens before *i*-th answer as input.

(In the slides, all results are macro-averaged across all datasets, models, and templates. Refer to our paper for more details.)

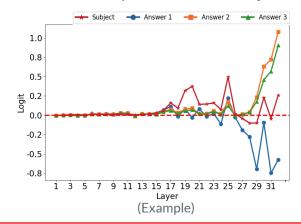
Overall Mechanism: Decode attention & MLP Outputs

Unembed update from **Attention** and **MLP** at the last token position across layers

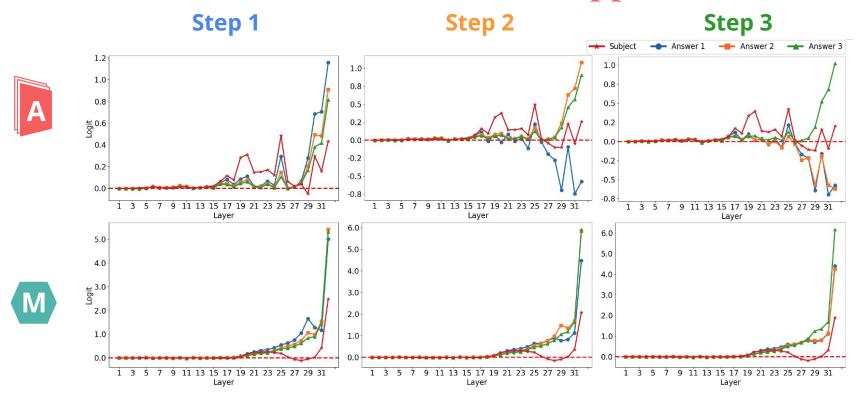


Visualize logit of the first token of answers predicted across answer steps and the subject

Positive: Promotion
Negative: Suppression



Overall Mechanism: Promote Then Suppress



(1) Attention copies subject (2) MLP promotes all answers (3) Previous answers suppressed

- Overall Mechanism: How do LMs get different answers at different steps?

 Promote all answers then suppress previous generated ones
- **Source**: How are knowledge recall and repetition avoidance implemented?

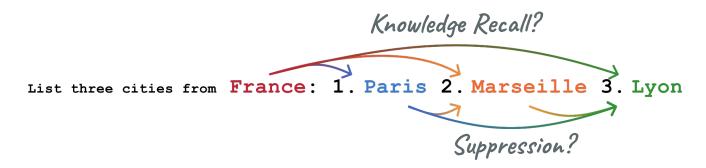
- Overall Mechanism: How do LMs get different answers at different steps?

 Promote all answers then suppress previous generated ones
- Source: How are knowledge recall and repetition avoidance implemented?
 - Causal tracing: Subject and previous answers are crucial to LMs' outputs.

List three cities from France: 1. Paris 2. Marseille 3. Lyon

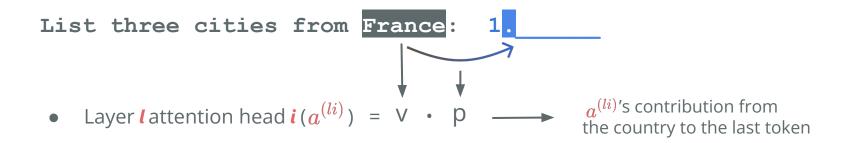
- Overall Mechanism: How do LMs get different answers at different steps?

 Promote all answers then suppress previous generated ones
- **Source**: How are knowledge recall and repetition avoidance implemented?
 - Causal tracing: Subject and previous answers are crucial to LMs' outputs.
 - How do attention and MLPs use these tokens to facilitate:



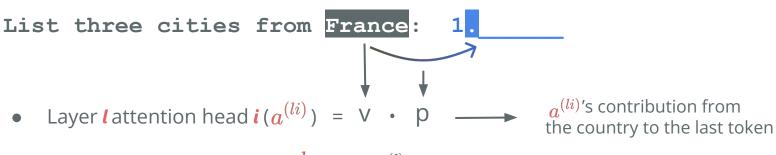
A Attention: Token Lens

Unembed the attention output of the target tokens



A Attention: Token Lens

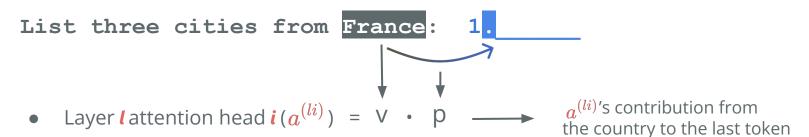
Unembed the attention output of the target tokens



• Layer $m{l}$ attention output $m{a}^{m{l}}$ = $W_o^{(l)} \cdot \operatorname{Concat}(a^{(l_1)}, \dots, a^{(l_n)})$

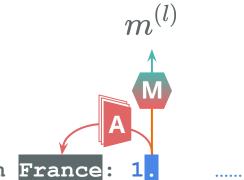
A Attention: Token Lens

Unembed the attention output of the target tokens



- Layer l attention output $a^l = W_o^{(l)} \cdot \operatorname{Concat}(a^{(l_1)}, \dots, a^{(l_n)})$
- Unembed a^l and examine logits: Positive for promotion. Negative for suppression.

MLPs: Attention Knockout



List three cities from France:

MLPs: Attention Knockout

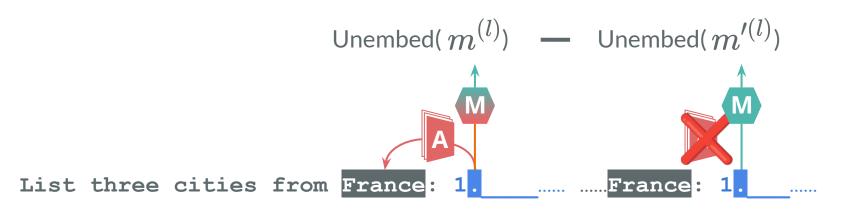
To measure how MLPs utilize target token information for answer promotion/suppression:



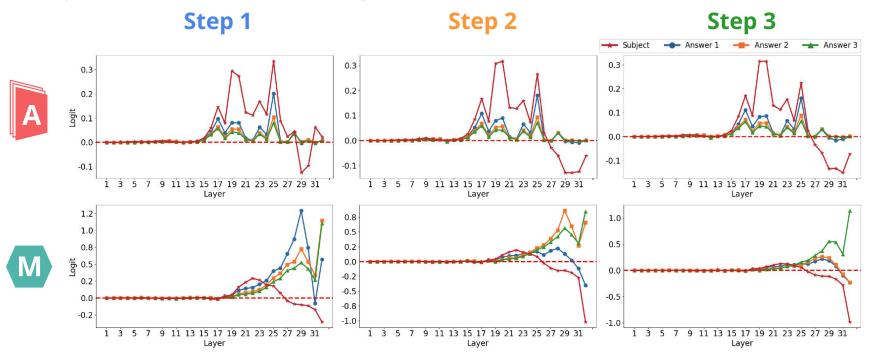
MLPs: Attention Knockout

To measure how MLPs utilize target token information for answer promotion/suppression:

- Zero out Attention from the last token to target tokens
- Visualize difference in MLP output logits w/ vs. w/o attention knockout across layers

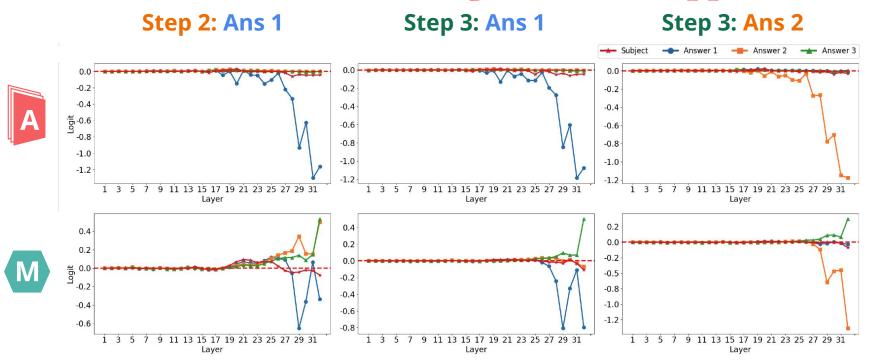


Subject for Knowledge Recall



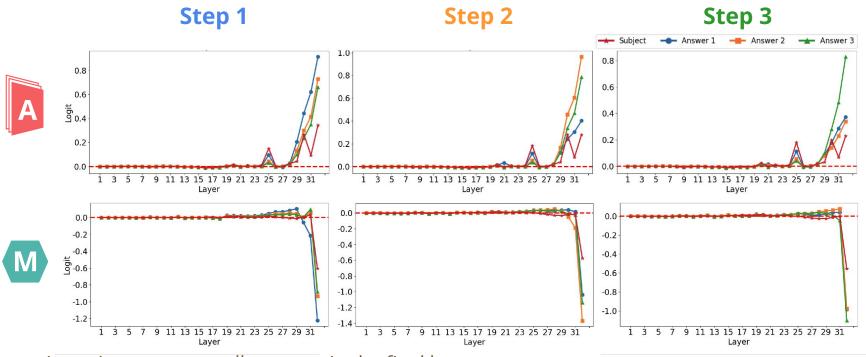
- Attention propagates subject. MLPs promote answers.
- Attention suppresses subject and MLPs amplify subject suppression at late layers.

Previous Answer for Knowledge Recall + Suppression



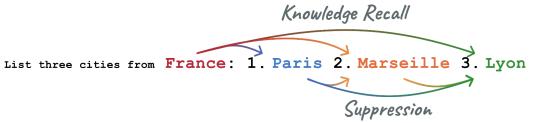
- Attention suppresses repetition. MLP amplifies suppression.
- MLPs use previous answers to promote new answers.

Last Token: Aggregate Knowledge Recall & Suppression



- Attention promotes all answers in the final layers.
- MLPs compensate answer promotions when the direct attention to the last token is absent.

Summary



- Overall Mechanism: How do LMs get different answers at different steps?

 Promote all answers then suppress previously generated ones
- Source: How are knowledge recall and repetition avoidance implemented?
 - Knowledge Recall:
 Attention propagates subject information.
 MLPs use both the subject and previous answers to promote new answers.
 - Repetition Avoidance:
 Attention attends to and suppresses previous answers.
 MLPs amplifies suppression.

Cited Work

Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov. Locating and Editing Factual Associations in GPT. NeurIPS 2022.

QR Codes/Contacts

